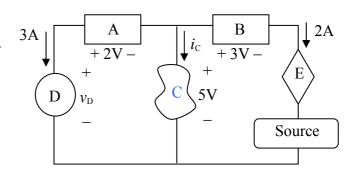
1. There are four fundamental SI units, m, kg, s, and A. Based on these fundamental units, some derived units are often used in electrical circuit analysis, such as C(coulomb), Ω (ohm), H(henry), and F(farad). Please write the SI units of C, Ω , H, and F.

Solution:

$$C := A \cdot s, \quad \Omega := \frac{kg \cdot m^2}{s^3 \cdot A^2}, \quad H := \frac{kg \cdot m^2}{s^2 \cdot A^2}, \quad F := \frac{s^4 \cdot A^2}{kg \cdot m^2}$$

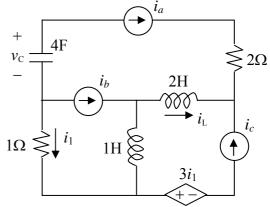
2. What is the absorbed power p_A of device A? What is the absorbed power p_B of device B?. What is the current i_C through device C? What is the voltage drop v_D along device D? If the power provided by the source is 10W, what is the absorbed power p_E of device E?



Solution:

$$p_{\rm A} = (-3) \cdot 2 = -6 \,\text{W}, \quad p_{\rm B} = 2 \cdot 3 = 6 \,\text{W}, \quad i_{\rm C} = (-3) + (-2) = -5 \,\text{A}, \quad v_{\rm D} = 2 + 5 = 7 \,\text{V}.$$
 Since $p_{\rm C} = (-5) \cdot 5 = -25 \,\text{W}$ and $p_{\rm D} = 3 \cdot 7 = 21 \,\text{W}$, we have $p_{\rm E} = 10 - (p_{\rm A} + p_{\rm B} + p_{\rm C} + p_{\rm D}) = 10 - (-6 + 6 - 25 + 21) = 14 \,\text{W}$

3. Determine v_C , i_L , and the power absorbed by the dependent source. The independent sources in amperes for $t \ge 0$ are $i_a = e^{-2t}$, $i_b = -3e^{-4t}$, and $i_c = 5e^{-t}$. The initial capacitance voltage is $v_C(0) = 1V$.



Solution:

$$v_{C} = v_{C}(0) + \frac{1}{C} \int_{0}^{t} i_{C}(\tau) dt = 1 + \frac{1}{4} \int_{0}^{t} (-i_{a}(\tau)) dt$$

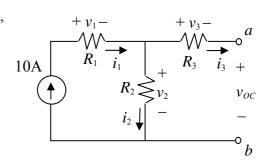
$$= 1 + \frac{1}{4} \int_{0}^{t} (-e^{-2\tau}) dt = 1 + \frac{1}{8} e^{-2\tau} \Big|_{0}^{t} = 1 + \frac{1}{8} e^{-2t} - \frac{1}{8} = \frac{7}{8} + \frac{1}{8} e^{-2t}$$

$$i_{\rm L} = L \frac{di_{\rm L}}{dt} = 2 \cdot \frac{d(-i_a - i_c)}{dt} = 2 \cdot \frac{d(-e^{-2t} - 5e^{-t})}{dt} = 4e^{-2t} + 10e^{-t}$$

The voltage drop across the dependent source is $v=3i_1=-3(i_a+i_b)=-3e^{-2t}+9e^{-4t}$. The current through it is $i=i_c=5e^{-t}$. So, the power absorbed is $vi=\left(-3e^{-2t}+9e^{-4t}\right)\cdot\left(5e^{-t}\right)=-15e^{-3t}+45e^{-5t}$ W

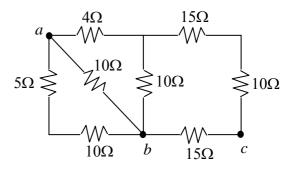
國立交通大學 95 暑修課程 電路一 Exam-1 (To Chap4) Solution

- 4. For the circuit on the right, $R_1=15\Omega$, $R_2=10\Omega$, and $R_3=10\Omega$.
 - (a) Determine current i_1 and the open-circuit voltage $v_{\rm OC}$. Also calculate the power absorbed by R_2 and R_3 .
 - (b) Short-circuit terminals a and b, then calculate current i_1 , voltage v_2 , and the short-circuit current i_{ab} .



Solution:

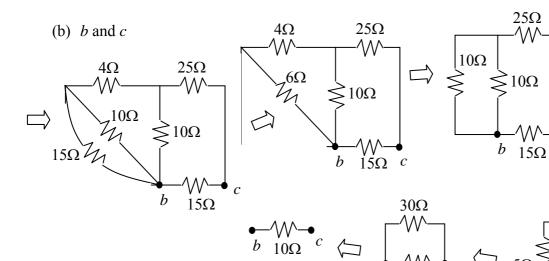
- (a) For the open circuit, i_3 =0 and i_1 = i_2 . Hence, $i_1 = i_2 = 10$ A, $v_{OC} = v_2 = R_2 i_2 = 10 \cdot 10 = 100$ V. The power absorbed by R_2 is $v_2 i_2 = 100 \cdot 10 = 1000$ W The power absorbed by R_3 is $v_3 i_3 = 0$ W.
- (b) For the short circuit, current i_1 does not change, that is, i_1 =10A and i_2 + i_3 =10. Because R_2 = R_3 , we have i_2 = i_3 and thus, i_2 = i_3 =5A. The voltage drop $v_2 = R_2 i_2 = 10 \cdot 5 = 50 \text{V}$. The short-circuit current $i_{ab} = i_3 = 5 \text{A}$.
- 5. Find the equivalent resistance when connections to the network shown on the right are made to the terminals specified.
 - (a) *a* and *b*
 - (b) *b* and *c*.



Solution:

(a) a and b $\begin{array}{c}
a & 4\Omega \\
\hline
10\Omega & 10\Omega
\end{array}$ $\begin{array}{c}
10\Omega \\
\hline
15\Omega
\end{array}$ $\begin{array}{c}
10\Omega \\
\hline
10\Omega
\end{array}$

國立交通大學 95 暑修課程 電路一 Exam-1 (To Chap4) Solution



6. Write a set of node-voltage equations in matrix form for the circuit on the right. Determine current i_x .

Solution:

Group v_1 and v_2 as the supernode.

KVL:
$$v_1 - v_2 = 4i_y = 2v_1 \Rightarrow v_1 + v_2 = 0$$

KCL:
$$2 + \frac{v_1}{2} + 1 + \frac{v_2}{4} = 0 \Rightarrow 2v_1 + v_2 = -12$$

In matrix form, we obtain $\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ -12 \end{bmatrix}$ and thus, $v_1 = -12V$ and $v_2 = 12V$.

$$2A$$

$$2\Omega$$

$$2\Omega$$

$$0$$
and thus, $v_1 = -12V$ and $v_2 = 12V$.

 4Ω

 25Ω

 15Ω

and thus,
$$v_1 = -12V$$
 and $v_2 = 12V$.

Hence,
$$i_x = -2 - \frac{v_1}{2} - \frac{v_1 - v_2}{4} = -2 + 6 + 6 = 10A$$
.

7. Write a set of mesh-current equations in matrix form for the circuit on the right. Determine voltage v_x .



Solution:

Group i_1 and i_2 as the supermesh.

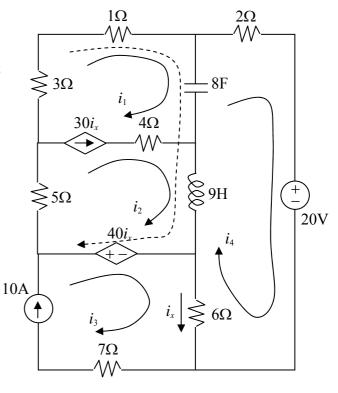
KCL:
$$i_2 - i_1 = 5 \Rightarrow i_1 - i_2 = -5$$

KVL:
$$-4+2i_y+2i_2+2i_1=0 \Rightarrow -4+2i_1+2i_2+2i_1=0 \Rightarrow 2i_1+i_2=2$$

In matrix form, we obtain $\begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$. The solution is $i_1 = -1$ A and $i_2 = 4$ A.

Hence,
$$v_r = 4 - 2i_1 = 4 + 2 = 6V$$
.

8. For the circuit on the right, please define suitable mesh currents and then write a set of mesh-current equations in matrix form.



Solution:

The mesh currents are shown in the figure.

- (1) KCL: $i_3 = 10$
- (2) Group i_1 and i_2 as the supermesh

KCL:
$$i_2 - i_1 = 30i_x = 30(i_3 - i_4)$$

$$\Rightarrow i_1 - i_2 + 30i_3 - 30i_4 = 0$$

KVL:
$$-40i_x + 5i_2 + 3i_1 + i_1 + \frac{1}{8} \int_{-\infty}^{t} (i_1 - i_4) d\tau + 9 \frac{d(i_2 - i_4)}{dt} = 0$$

$$\Rightarrow 4i_1 + \frac{1}{8} \int_{-\infty}^{t} i_1 d\tau + 5i_2 + 9 \frac{di_2}{dt} - 40i_3 + 40i_4 - \frac{1}{8} \int_{-\infty}^{t} i_4 d\tau - 9 \frac{di_4}{dt} = 0$$

(3) KVL:
$$20 + 6(i_4 - i_3) + 9\frac{d(i_4 - i_2)}{dt} + \frac{1}{8} \int_{-\infty}^{t} (i_4 - i_1) d\tau + 2i_4 = 0$$

$$\Rightarrow -\frac{1}{8} \int_{-\infty}^{t} i_1 d\tau - 9\frac{di_2}{dt} - 6i_3 + 8i_4 + 9\frac{di_4}{dt} + \frac{1}{8} \int_{-\infty}^{t} i_4 d\tau = -20$$

In matrix form, we have

$$\begin{bmatrix} 1 & -1 & 30 & -30 \\ 4 + \frac{1}{8} \int_{-\infty}^{t} d\tau & 5 + 9\frac{d}{dt} & -40 & 40 - \frac{1}{8} \int_{-\infty}^{t} d\tau - 9\frac{d}{dt} \\ 0 & 0 & 1 & 0 \\ -\frac{1}{8} \int_{-\infty}^{t} d\tau & -9\frac{d}{dt} & -6 & 8 + 9\frac{d}{dt} + \frac{1}{8} \int_{-\infty}^{t} d\tau \end{bmatrix} \cdot \begin{bmatrix} i_1 \\ i_2 \\ i_3 \\ i_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 10 \\ -20 \end{bmatrix}$$